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Abstract

A stochastic modal analysis is developed for reliability studies of rotating beams with uncertain material and sec-
tional properties, uncertain geometric parameters, and random rotating speed. The formulation of the stochastic modal
analysis is based on mean-centered second-order perturbation technique and nonlinear eigenvalue analysis. A consis-
tent linearization of the fully geometrically nonlinear beam theory and the virtual work principle are used to derive the
governing equations of a rotating Timoshenko beam, and a power series method is employed for the nonlinear
eigenvalue analysis to obtain the natural frequencies and vibration modes for free vibration. The effects of variations in
material and sectional properties, geometric parameters, and rotating speed on variation in natural frequency are in-
vestigated. A sensitivity analysis is performed to identify the important factors on the variation of frequency responses.
Here, a definition of resonant failure of a rotating beam is introduced and considered as the limit-state function in the
reliability assessment of the rotating beams. To establish the validity of the present probabilistic approach, numerical
examples with results obtained by using the Monte Carlo method are given for comparison. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Rotating beams are often used as the simple model for propellers, turbine blades, and satellite booms.
The free vibration frequencies of rotating Timoshenko beams have been extensively studied (Wang et al.,
1976; Yokoyama, 1988; Lee and Lin; 1994; Du et al., 1994; Nagaraj, 1996). These researches are limited to
the deterministic modal or mechanical analysis. However, in reality, components of structural and me-
chanical systems often exhibit considerable stochastic variations in their properties. Thus, the character-
istics of the structure corresponding to these properties also show some stochastic variations. This leads
to the necessity to take account of the uncertainties of design parameters in the analysis if highly reliable
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structures are to be designed. In the design and analysis of stochastic dynamical systems, statistical mo-
ments of frequency responses are widely used. Boyce and Goodwin (1964) used the perturbation approach
for the solution of the eigenvalue problem of random strings and beams. Soong and Bogdanoff (1963) used
transfer matrix techniques to investigate the behavior of disordered linear chains. Nakagiri et al. (1985)
studied the uncertain eigenvalue analysis of composite laminates by the stochastic finite element method.
Hien and Kleiber (1991) discussed the stochastic design sensitivity of the dynamic response. Singh (1985)
studied the reliability of turbine blades that predict the probability of the natural frequency and/or the
magnifier to exceed the nominal design value. Though much work has been performed in this area, how-
ever, the study on the reliability of rotating beams is rather limited in the literature. The combined effects
of uncertainties in material and sectional properties, geometric parameters, and rotating speed on the re-
liability of rotating beams should be studied thoroughly if highly reliable rotating beam structures are to be
designed.

The objective of this paper is to investigate the reliability of a rotating beam with random parameters. In
this paper, the exact governing equations of rotating Timoshenko beams are derived by consistent lineari-
zation of the fully geometrically nonlinear beam theory and the virtual work principle. A power series
method is employed for the nonlinear eigenvalue analysis to obtain the natural frequencies and vibration
modes for free vibration. Here, it is assumed that failure of a rotating beam called ‘resonant failure’ will
occur when natural frequencies of the rotating beam are located within a range of the specified nominal
design values of the rotating speed. The resonant failure of a random rotating beam is used as the limit-state
equation in the reliability analysis. A stochastic modal analysis of rotating structures based on the mean-
centered second-order method is developed for the reliability analysis. The statistical moments of frequency
response of rotating beams with uncertain material and sectional properties, geometric parameters and
rotating speed are inferred from the statistics of the base-line random variables (BLRV) through the uti-
lization of the mean-centered second-order method and nonlinear eigenvalue analysis. To establish the
validity of the present probabilistic approach, numerical examples are solved and the results using the
Monte Carlo method (MCM) are given for comparison.

2. Description of problem

Consider a uniform Timoshenko beam rigidly mounted on the periphery of a rigid hub with radius R
which rotates about the hub axis fixed in space at a constant angular speed as shown in Fig. 1. Dis-
placements of the beam are defined in a rotating rectangular Cartesian coordinate system, rigidly tied to the
hub. The origin of this coordinate system is chosen to be the intersection of the centroid axes of the hub and
the undeformed beam. The X axis is the centroid axis of the undeformed beam, and X, and X; axes are
principal axes of the beam cross-section at the undeformed state. In this paper, all vectors are referred to
this coordinate system. The angular velocity of the hub may be given by

Q ={0,Qsinf, Qcos i}, (1)

where the symbol { } denotes a column matrix, which is used through the paper. The setting angle f of the
beam is the angle between the hub axis and the X; axis.

Here it is assumed that the beam is only deformed in the X;—X; plane. It is well known that the beam
sustains a steady-state axial deformation induced by a constant rotation (Likins, 1973). In this study, the
infinitesimally small free vibration of the beam with respect to the position of the steady-state axial de-
formation and linear stress-strain relationship are considered.
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Fig. 1. A rotating Timoshenko beam.

3. Equations of motion

Let P (Fig. 2) be an arbitrary point in the beam element, and Q be the point corresponding to P on the
centroid axis. The position vector of point P in the undeformed and deformed configurations may be
expressed as

ro = {R+x,y,z}, (2)
r={R+x+i(x,t) —zsing,y, w(x,t) + zcos ¢}, (3)
ﬁ(xv t) = us(x) + u(xv t)a (4)

where ¢ is the time, u(x) is the steady-state axial deformation induced by constant rotation velocity. During
vibration, the infinitesimal displacements of point Q in the X; and X3 directions and the infinitesimal angle
of rotation of the cross-section about the negative X, axis with respect to the steady-state configuration are
u(x,1), w(x,t) and ¢(x,1), respectively.

The engineering strains of a Timoshenko beam may be approximated by

£=28 —zQ,, ()

V=W — @ (6)
where ¢, is the unit extension of the centroid axis, and may be approximated by
g0 = iy + 305 + W), (7)

The equations of motion for the rotating Timoshenko beam are derived by using the d’Alembert and the
virtual work principles. The consistent linearization of fully geometrically nonlinear beam theory is used in
the derivation.

Fig. 3 shows a portion of the deformed centerline of the beam. Here the generalized displacements are
chosen to be #, w, and ¢ defined in Eq. (3). The corresponding generalized forces are Fi, F3, and M, the
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Fig. 2. Kinematics of deformed Timoshenko beam.

X
Fig. 3. Free body of a portion of deformed beam.
forces in x;, x5 directions, and moment about the negative x, axis. F};, £3;, and M; (j = 1,2) in Fig. 3 denote

the values of F, F;, and M at jth sections.
The virtual work principle may be written as

6I/Vext = 6I/Vint (8)
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where 6., and 0, are the virtual work of the external forces and the internal stresses, respectively, d¢ is
the variation of ¢ given in Eq. (5), 8y is the variation of y given in Eq. (6), or is the variation of r given in Eq.
(3), and f = d°r /d# is the absolute acceleration. In this paper, the symbol (*) denotes differentiation with
respect to time ¢. E is Young’s modulus, G is the shear modulus, «; is the shear correction factor, p is the
density, V), is the volume of the undeformed beam between Sections 1 and 2. The differential volume dV
may be expressed as dV = d4 dx, where dA4 is the differential cross-section area of the beam.

The exact expression of W, may be very complicated. However, due to the assumption of infinitesimal
vibration, the quantities u, w, and ¢ defined in Eqgs. (3) and (4), and their derivatives with respect to x and ¢
are all infinitesimal quantities. For linear vibration analysis, only the terms up to the first order of infini-
tesimal quantities are required. In order to retain all terms up to the first order of infinitesimal quantities in
dWoy, all terms up to the first order of infinitesimal quantities are retained for ¢, ¢, oy, 7, or, and r in Eq.
(10). Note that the steady-state axial deformations us(x) in Eq. (4) and its derivatives with respect to x are
small finite quantities, not infinitesimal quantities, and are all retained as the zeroth-order terms of infini-
tesimal quantities.

From Egs. (3), (5), (6) and (8)-(10), one may obtain

AEii,, = pAlii + 2wQsin f — (R + x + )], (11)
AE(ugaw.) , + 0,GA(W — @) = pA(ib — 20Qsin f — w@’sin’ ), (12)
EI(p,xx = p[((b - (pgz COSzﬁ) - OCSGA(W,X - (P), (13)

where I = [, z2dA is the moment of inertia of the cross-section, and the underlined terms in Egs. (11) and
(12) are the Coriolis forces.
The boundary conditions for a fixed end at x = 0 and for a free end at x = L are given by

us(0) = u(0,¢) =0, w(0,¢) =0, 0(0,¢) =0, (14)

us (L) =u,(L,t) =0, wi(L,t) — o(L,t) =0, ¢ (L,t)=0. (15)

4. Nonlinear eigenvalue analysis

Let

k = QL\/p/E. (16)
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be the dimensionless rotation speed. When £ < 1, the steady-state axial deformation may be approximated
by

3 Rx? L

Q-
:p—(Tx—7+7+RLx>. (17)

us(x) 5

The vibration of the beam is measured from the position of the steady-state axial deformation. From
Egs. (4), (11)—(13), and (17), the governing equations for free vibration may be expressed as

pL?

U5¢:7[0+2W95inﬁ—92U], (18)
2 . , .
NeWe+ NWee + 1o(Wee — @) = %(—ZUQSIHB — WQsin’f + ) (19)
_PL o o cos? 20
<p455—7(¢—<p cos ) — u(W: — o) (20)
where

N = k(=058 — ré +r+0.5)

oG (21)
Ho=—p R=1po, n=AP/L,
R
é:{a U:Ea W:LVa r=—, (22)
L L L L

and k is defined in Eq. (16). Note that # is the slenderness ratio of the beam, and N is the steady-state axial
strain.
We shall seek a solution of Egs. (18)—(20) in the form

U(&, 1) = (Ug(&) +1U;(£))e™ (23)

U(f,l‘) = {U, W7(P}7 Uk(f) = {UR7 Wk, (PR}7 Ul(f) = {Uh Wh(/’1}7 (24)

where i = v/—1, and w is the natural frequency to be determined. Introducing Eq. (23) into Egs. (18)—(20),
we obtain U; = Ug, W = =W}, @ = —¢,, and

PA::+QA:+RA=0 (25)

A:{UR,VV},(P[} (26)
1 0 0 0 0 0 a d 0

P={0 N+ Ho 0 P Q =10 Ni —Hy | R=|d b 0 ) (27)
0 0 1 0 wu 0 0 0 ¢

where a = k2 + K2, b = K> + k?sin®p, ¢ = —pu+ K* + k*cos?f5, d = 2kK sin 8, and K is a dimensionless natu-
ral frequency given by

K =wL\/p/E (28)

It can be seen that Eq. (25) is a set of linear ordinary differential equations with variable coefficients. The
solution of Eq. (25) can be expressed as a power series in the independent variable ¢&:
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A(¢) = icné", (29)

n=0

Cn = {Clna CZna C3n}7 (30)

where C;, (i = 1,2,3) are undetermined coefficients.
Substituting Eq. (29) into Eq. (25) and equating coefficients of like power of &, we obtain the recurrence
formula

Cn = AnCn72 + Bncnfh nz 27
| A]] A12 0 -1 0 0 0
A,, = ﬁ Az] A22 0 5 Bn =—10 B22 BZ3 ) (31)
nn 0 0 A33 " 0 B32 0

where A11 =a, A12 = d, A21 = d/f, A22 = 1/f[b — (l’l — 2)1(2 — 1/2(1’1 — 2)(1’1 — 3)1(2], A33 =, Bzz =
—(n— l)zkzr/f, Bys = —uy/f, Bx» = , in which f = p, + k*(r +0.5), a, b, ¢, and d are defined in Eq. (27).

From Eq. (31), it can be seen that only Cy and C; are independent constants in Eq. (29), thus, Eq. (29)
can be rewritten as

A =T+ &Y |Co+ [ e+ &Yy |G
n=2 n=2 (32)
=E (&)Cy+E,(§)Cy
where

Y, =AY, 2 +BY,", Y =AY ?+BY]"

Y=Y =1, Y=Y =0, (33)
in which I and 0 are unit matrix and zero matrix of order 3 x 3, respectively.
From the boundary conditions given in Egs. (14) and (15), and Eq. (32), one can obtain Cy = 0 and
K(K)C, = [E;:(1) — ME,(1)]C, = 0, (34)

where

00 0
M=[0 0 1],
00 0

and K(K) denotes K is function of K given in Eq. (28).

For a nontrivial Cy, the determinant of the 3 x 3 matrix K in Eq. (34) must be equal to zero. The values
of K which make this determinant vanish are called eigenvalues of matrix K and give the natural frequencies
of the rotating Timoshenko beam through Eq. (28). The bisection method is used here to find the eigen-
values.

5. Uncertainties of the rotating Timoshenko beam

Consider a Timoshenko beam consisting of uniform rectangular cross-section with width A and
thickness 7. As is well known, the system uncertainties such as material properties (p, £ and G), sectional
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parameters (H and 7T) and geometric parameters (5, R and L) of the rotating beam may fluctuate in the
vicinity of the prescribed values during the process of measurement, structural element manufacture, and
erection of the structure. Therefore, system parameters should be treated as random rather than deter-
ministic. Besides, rotating beam differs from a nonrotating beam in having additional centrifugal forces and
Coriolis effects in its dynamics. The rotating speed Q2 of a beam plays an important role in these effects, and
may be often varied around the working speed. Thus, the rotating speed is also random in nature.

From now on, b; (i =1,2,...,9) will be used to denote the BLRV in which b; (i = 1,2,3) are material
properties p, E and G, respectively; b; (i =4,5) the sectional properties T and H, respectively; b; (i =
6,7,8) geometric parameters f§, R and L, respectively; and by = Q. Since the determination of the inter-
relations of the BLRV is a difficult task, the adoption of the independence assumption can greatly simplify
the reliability assessment. Therefore, the above BLRYV b; are treated to be stochastically independent from
each other. Their statistics are used to predict the mechanical behavior of rotating Timoshenko beams.

These uncertainties can cause variations on elements of the matrix K in Eq. (34). Since the matrix K is
uncertain, the natural frequencies of the rotating beam are also random variates. The statistical moments of
the natural frequencies may be derived from those of the base-line random parameters in the mean-centered
second-order perturbation approach.

6. The stochastic modal analysis

The most adopted technique for analyzing the stochastic response of random systems in engineering is
the mean-centered second-order approach. The major advantage of this technique is that the multivariate
distribution functions need not to be known but only the first two moments. One of the inherent limitations
of the second-order technique is that the uncertainties cannot be large, i.e., variances of the random
variables cannot be large when compared with their mean. Typically, the coefficient of variation (COV) is
around 10% although it has been shown that it could be as high as 20% for acceptable results to be obtained
(Ang and Tang, 1984; Cornell, 1972). The basic idea of this second-order approach is to expand the random
response about the mean value of BLRV and to retain only up to second-order terms. To derive the
formulation of stochastic modal analysis, the frequency response w of a rotating beam may be expanded in
terms of the random variables b; (i = 1,2,...,M) as

M M M
1
o =0+ oAb+ §§ > ol Ab; A, (35)
i=1 1

=1 j=

where Ab; = b; — b; with b; denoting the mean value of the random variable b;; M = 9; »® is the zeroth-
order term of natural frequency, which is identical to the deterministic natural frequency; a)Fil) is the first-
order term of natural frequency with respect to random variables b;; a)f;) is the second-order term of natural
frequency with respect to random variables b; and b;.

The zero-order term of natural frequency »® may be determined by solving the nonlinear eigenvalue
problem of Eq. (34) using the bisection method as mentioned. The expressions of elements in K(w) and
normality condition on the eigenvectors, respectively, in terms of BLRV are complicated and difficult. The
analytical solution for the derivatives of nonlinear eigenvalues (Jankovic, 1988) may be difficult to achieve.
Thus, the following finite difference approximation is employed here to calculate the sensitivity terms of the
natural frequency of rotating beams.

T
S]]
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(Ab,)*

(37)

b=

IS

The routine DERIV of IMSL (1989) mathematical package is employed to evaluate the first- and second-
order terms of natural frequency statistics.

Based on the mean-centered second-order method (Ang and Tang, 1984), the approximate mean in-
volves the second-order effect while the approximate variance is only the first order. They are given as
follows:

Elo 529:29: ) Cov(b;, b)) (38)

—_

Var[w ZZ‘” o'} Cov(b, b;) (39)

i=1 j=

where Cov(b;, b;) is the covariance between b; and b,.
When the BLRV are stochastically independent, Cov(b;, b;) =0, i # j, and Cov(b;,b;) = Var[b;], i = J.
Thus Egs. (38) and (39) may be rewritten as

1 9
Elw] = 0® + 3 > wls; (40)
i=1

S ) (ol (41)

where S, and S, are the standard deviation of w and b:, respectively.

7. Sensitivity analysis

In general, sensitivity analysis is an important part of stochastic structural analysis. One benefit of
sensitivity studies is the identification of the design parameters that have the greatest effect on the estimated
statistics of structural responses. The other benefit is the ability to identify those parameters that can be
taken as fixed values and need not be considered as random variables in the corresponding stochastic
model. Efficiency of most stochastic structural analysis methods depends strongly on the number of ran-
dom variables. It is really helpful to be able to model a component or system with a small number of
random variables. In this paper, the effects of uncertainties of the base-line random parameters on the
variation of frequency responses are studied using the following sensitivity measure.

6Sa} Sb,
aS}) @]

N = (42)
where #; is defined as the relative sensitivity coefficient which is a measure of the fractional change of S,
with respect to a fractional change in S,,; 0 is the differential operator. In view of Eq. (42), the above
equation can be rewritten as

(12 Sz%,

=00 g (43)
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Based on the above equation, the BLRV that have significant effects on the variation of natural frequency
can be identified.

8. Reliability analysis

As is well known, a machine operating within a range of frequencies near its natural frequency will
undergo high vibration. Here, it is assumed that a structural failure called ‘resonant failure’ will occur when
natural frequencies of the rotating beam are located within a range of the specified nominal design values of
the rotating speed. In this paper, the resonant failure of the rotating beam is considered in the reliability
analysis. The resonant failure probability may be written as

Py = ProblE[Q](1 — 1) < w < E[Q)(1 + 7)] (44)

where y = 0.05{ and { is a constant parameter for ranging the failure bound.

The reliability assessment of a rotating beam structure, in general, requires information on the proba-
bility distribution and not just statistical moments of the natural frequency of the structure. In Section 7,
however, only statistical moments of natural frequency can be determined, while the types of probability
distributions of the natural frequencies are indeterminate. As smooth probability distribution functions
commonly used by practicing engineers produce reasonable results for reliability assessments of mechani-
cal/structural components, here, the lognormal distribution denoted by f,,(u) is assumed for the probability
density functions of w. Thus the probability in Eq. (44) can be written as

&:/mww (45)

where a = E[Q|(1 — y), b = E[Q|(1 + ).

The probability of Eq. (45) can be evaluated by the numerical integration. The Monte-Carlo simulation
will be employed to verify the accuracy of the present reliability assessment of the random rotating beam
subject to the resonant failure.

9. Numerical examples

To demonstrate the accuracy and efficiency of the present deterministic formulation, firstly, numerical
examples for the natural frequencies of a rotating Timoshenko beam are studied. Here cases with and
without considering the Coriolis force, referred to as Case A and Case B, respectively, are considered, and
the corresponding results are referred as to Present A and Present B, respectively.

In order to compare present results with those reported in the literature, the dimensionless natural
frequency A = nK = wlL?\/pA/EI and dimensionless rotational speed o = nk = QL?+/pA/EI are employed
here. The natural frequencies of the rotating beams for different values of the setting angle are listed in
Table 1. As expected, for § = 0 the results of Present A, Present B and those reported in the literature are in
close agreement. For = 90°, the discrepancies between the results of Present A and Present B are noted.
This observation indicates that the effect of the Coriolis force on the natural frequencies of the rotating
Timoshenko beam is not negligible. Therefore, even though it is observed that the effect of the Coriolis
force on the natural frequencies decreases for higher modes, the Coriolis force is considered in the following
stochastic modal analysis and the corresponding reliability assessment of the rotating beam. To study
natural frequency statistics of the rotating Timoshenko beam with different BLRV, the following cases are
studied: Case I, only material properties were treated as random; Case II, only rotating speed was random;
Case III, only sectional properties were random; Case IV, only geometric properties were random. Since
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Table 1
Dimensionless frequencies for the rotating Timoshenko beam (o = 10, » =3, 1/u = 3.0588#)
p n=0.01 n = 0.0025
/11 /12 /13 /14 /1] /12 /13 /14
0
A 22.938 44.781 66.287 71.967 23.491 55.984 96.913 143.71
B 22.938 44.781 66.287 71.967 23.491 55.984 96.913 143.71
C 23.050 45.598 67.716 73.076 23.524 56.105 97.188 144.49
D 22.938 44781 66.287 71.967 23.491 55.984 96.913 143.71
E 23.037 45.428 66.854 72.313 23.514 56.072 97.011 143.82
90
A 8.500 29.152 49.372 74.141 16.691 37.751 91.041 140.98
B 20.853 44.957 66.677 71.985 21.298 55.240 96.594 143.50
C 20.867 45.115 67.520 72.756 21.313 55.284 96.747 144.21
D 20.753 44315 66.109 71.620 21.277 55.162 96.473 143.43
E 20.850 44.955 66.668 71.982 21.302 55.250 96.570 143.53

A: Present A, B: Present B, C: given by Yokoyama (1988), D: given by Lee and Lin (1994), E: given by Wang et al. (1976).

existing alternative solutions are limited, the MCM is used to obtain results for comparison. Without
the loss of generality, here the first two natural frequencies of the beam are investigated. Unless stated,
otherwise, the statistics of BLRV given in Table 2 are used in the following numerical studies.

The COV for natural frequencies denoted by V,, (i =1,2) is investigated first. Results for different
BLRYV obtained by using the present and MCMs are obtained. The effects on COV correspond to various
E[Q] for = 0° for the first and second modes shown in Figs. 4 and 5. It is noted that the results obtained
by the present method are in excellent agreement with those obtained by the MCM in which over 5000 data
have been generated for each case. As can seen from Fig. 4 for the setting angle f = 0° among different
BLRYV, the randomness of sectional properties has greater effects on ¥, as E[Q] <2000 rpm and the
randomness of rotating speed has greater effects as £[Q] > 2000 rpm. It can be seen that ¥, corresponding
to the random rotating speed monotonically increases with the increase of E[Q] and V,, corresponding to
the other randomness decreases with the increase of E[Q]. Fig. 5 shows the V,,, of the second natural fre-
quency for the beam with different BLRV. For § = 90° with different BLRYV, the trend of variation of COV
with respect to E[Q] is very much similar for the first and second modes. Results for the first mode
are shown in Fig. 6 for illustration. It can be seen that the randomness of sectional properties may have
the greater effect on the V,, (i = 1,2), and, as expected, the COV of the first two natural frequencies,

Table 2

Statistics of the BLRV
BLRV Mean Standard deviation
P 11.79 g/em? 1.18 g/cm?
E 165.44 GPa 16.54 GPa
G 63.44 GPa 6.34 GPa
T 4.0 cm 0.4 cm
H 1.5 cm 0.15 cm
B 1.8°
L 80.0 cm 2.4 cm
R 8.0 cm 0.8 cm
Q 10%*

“Data presents the COV of BLRV.

&
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(V.,,i = 1,2), corresponding to the random rotating speed have the increasing influence by the increase of

Figs. 7 and 8 show the mean values and three standard-deviation bounds of the frst two natural fre-
quencies for the beam for f = 0° and f = 90°, respectively, with all BLRV. In Figs. 7 and 8, the relations
between plus or minus three standard-deviation bounds, +3S,, of natural frequencies and the expected
value of rotating speed, E[€], are constructed. The results obtained by the present method are in excellent
agreement with those obtained by the MCM in which over 5000 data have been generated for each case.
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In order to investigate the important factor of the BLRV on the variation of natural frequencies, the
sensitivity analysis of the frequency responses will be studied in advance. The relative sensitivity coefficients
derived from Eq. (43) for f = 0° shown in Figs. 9 and 10 for first two natural frequencies of the beam,
respectively. As the trend of variation for f = 90° case is similar for the first and second modes, results for
the first mode only are shown in Fig. 11. It is noted that the random parameters p, E, T, L and £ have more
significant effects on the variation of the natural frequencies for the rotating beams than the other random
parameters. Irrelevant to the setting angles f = 0° and f = 90°, the random variable 7 has the most effect
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on the variation of the natural frequencies and, as expected, the effect of @ will increase on the variation of
the natural frequencies as the expected value of rotating speed is increased. Therefore, it is important to
have tight control on the sectional thickness and rotating speed if higher reliability for the rotating beams is
desired. It is also worth noting that the random parameters G, H, R and f have relative small #, thus, these
random parameters may be treated as constant (deterministic) in the corresponding stochastic modal
analysis.

Finally, the reliability of the rotating beams with all BLRV subject to the resonant failure will be studied.
The definitions of P, was given in Eq. (45). It is noted that in Figs. 12 and 13 the results obtained by the
present method are in excellent agreement with those obtained by the MCM in which over 10 000 data have
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Fig. 11. The sensitivities of the first natural frequency vs. the expected value of rotating speed for the Timoshenko beam with the setting

angle = 90°.

been generated for each case. It should be noted that the effect of the failure bound { will play the important
role on the reliability assessment.

10. Conclusions

The randomness of frequency responses of rotating Timoshenko beams with random parameters has
been investigated by the stochastic modal analysis based on the mean-centered second-order perturbation
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technique and nonlinear eigenvalue analysis. The feasibility and accuracy of the present approach are
validated by comparing present results with those given in the existing literature using deterministic modal
analysis, and to results obtained via the MCM in the stochastic modal analysis. In the present study, a
sensitivity analysis of the variation of frequency responses was also performed. It has been found that
sectional thickness and rotating speed have significant effects on the variation of frequency responses. A
tight control on these parameters is required if high reliability on the design of rotating Timoshenko beams
is desired. It was also noting that the random parameters such as shear modulus, width of rectangular
cross-section, radius of the hub, and the setting angle had relative insignificant effects on variation of
frequency responses, therefore, those random parameters may be able to be treated as constants in the
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stochastic modal analysis. In addition, the reliability of the rotating beams with all BLRV subject to the
resonant failure are studied. Based on the present probabilistic analysis, it is believed that the procedure
may be valuable for developing the reliability analysis of rotating beams.
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